

Radiation Damage

E.Fretwurst, R.Klanner, H.Perrey, I.Pintilie^{*)}, A.Srivastava, T.Theedt

(Univ. Hamburg, *)National Inst. Materials, Romania)

- 1. X-ray irradiation facility new irradiations
- 2. Reminder: Status at last XDAC-meeting
- 3. X-ray radiation damage: new effects and first understanding
- 4. First results of annealing studies
- 5. Outlook next steps

X-ray Irradiation@F4 - new irradiations

1. X-ray irradiation facility - new irradiations

HELMHOLTZ GEMEINSCHAFT

- Improved uniformity by vertical scanning
- Re-measurement of horizontal profile

- Irradiation of test structures repeated
 - verify previous results
 - check effect of vertical non-uniformity
 - assure better defined "annealing-status" (put samples in freezer to avoid room temperature annealing)

Robert Klanner - Univ. Hamburg

2. Status at last XDAC-meeting - measurement techniques

N_{it}+N_{Ox}(interface trap- + oxide chargedensity) from V-shift of C/V curve N_{it} also → frequency dependence of C/V

D_{it} (distribution of interface traps in band gap [cm⁻²eV⁻¹] from TSC
(Thermally Stimulated Current technique)

Status at last XDAC-meeting - main results:

→V_{fb} [N_{Ox}+N_{it}] and I_{Ox} [N_{it}] reach maximum at few MGy – then decrease (tentative conclusion: decrease due to N_{it} at high doses – reason not clear)

HELMHOLTZ

3. New effects and (attempt of a) first "understanding":

C/V measurements exhibit a random component (hidden parameter)

Observation of strong hysteresis and temperature effects: (\rightarrow C/V curve depends (eg) on stepping speed and direction of V)

 $\rightarrow N_{Ox}$ component with long (>> 1/f_{AC}) time constant \rightarrow dependence on biasing history

PAUL SCHERRER INSTITUT

HELMHOLTZ

GEMEINSCHAFT

\rightarrow assume 3 components of irradiation effects:

- 1. N_{Ox}^{fix} fixed oxide charges \rightarrow shift of ideal CMOS-C/V-curve (no bending C/V, no f-dependence C/V, no I_{Ox})
- 2. N_{Ox}^{mob} mobile oxide charges (close to interface) \rightarrow shift C/V-curve, no f-dependence C/V, responsible for hysteresis effects, no I_{Ox})
- 3. D_{it} interface traps (integral N_{it}) \rightarrow oxide charges (close to interface) \rightarrow shift C/V-curve (N_{it}), f-dependence C/V, I_{Ox} (D_{it} close to mid-band)

attempt to use disentangle the 3 components:

- obtain D_{it} and N_{it} from TSC-measurements
- simulate C/V curve and compare the shape
- "erase" mobile charges (eg anneal 30' at 80°C) → 1st "fast" C/V curve is determined only by N^{fix}_{Ox} and N_{it}
- obtain N_{Ox}^{mob} from "C/V" hysteresis for fast (0.2 sec waiting time) C/Vcurve (0 \rightarrow -80 \rightarrow 0Volts) [result depends on waiting time at -80Volts)
- verify that simulation describes data
- check that results are consistent with I_{Ox} results

D_{it} [cm⁻²eV⁻¹] Interface density vs Irradiation dose

(from TSC thermally Stimulated Current- measurements):

→ significant decrease (1 MGy → 1 GGy) of D_{it} in particular close to the middle of the band gap, where sensitivity to I_{O_x} highest

PAUL SCHERRER INSTITUT

HELMHOLTZ

GEMEINSCHAFT

Comparison to measurements:

Results:

Robert Klanner - Univ. Hamburg

AGIPD meeting 7 April 2009

9/13

4. First results from annealing studies:

We have learned only recently to obtain reproducible results → delays in annealing studies

Start: measure CV, IV and TSC-spectra vs annealing time at 80°C:

 \rightarrow first results

First annealing studies

 \rightarrow strong annealing effects observed