Spin-Peierls distortions in TiPO$_4$

1Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
2Institute of Inorganic Chemistry, University of Bonn, 53121 Bonn, Germany
3Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, 130-701 Seoul, Republic of Korea
4Department of Chemistry, North Carolina State University, 27695 Raleigh, North Carolina, USA
5Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany

The spin-Peierls (SP) distortion denotes a particular type of magneto-elastic coupling, which occurs in compounds containing quasi-one-dimensional antiferromagnetic spin chains [1]. The most recent inorganic SP system TiPO$_4$ was reported in 2011 [2]. Two successive phase transitions at remarkably high transition temperatures $T_{c2} = 111$ K and at $T_{c1} = 74$ K were studied by magnetic susceptibility, heat capacity, electron spin resonance and nuclear magnetic resonance measurements. However, in house x-ray diffraction couldn’t detect any noticeable differences between room-temperature and low-temperature structures, while the structural distortions are expected for the SP transitions.

We have carried out single-crystal x-ray diffraction experiments at beam line D3 of Hasylab using the Huber four-circle diffractometer and a closed-cycle helium cryostat. Synchrotron radiation provides an excellent opportunity to detect weak satellite reflections, which appear as a consequence of slight structural distortions, and to perform a data collection for an accurate structure refinement. Furthermore, in order to assign a correct symmetry, possible small monoclinic lattice distortions must be studied. Such lattice distortions would result in splitting of Bragg reflections, therefore, in order to test the hypothesis of a monoclinic lattice we have measured $\omega - 2\theta$ maps centered on the reflections (-3 3 0), (0 -4 -2) and (4 0 -4) between 10 K and 145 K with narrow detector slits in 2θ direction. These scans revealed no peak splitting at all temperatures, therefore manifesting the preservation of orthorhombic symmetry in both low-temperature phases (Fig. 1).

In order to detect superlattice reflections, we have performed the q scans along all principal reciprocal lattice axes and diagonals. Weak satellite reflections were observed at positions $(h + \sigma_1, k, l)$. Below 74 K σ_1 amounts to $\frac{1}{2}$, and indicates a formation of the superstructure with a doubling of the room-temperature unit cell along a. The crystal structure of the intermediate phase appeared to be incommensurately modulated with temperature-dependent q-vector $(\sigma_1(0))$. Both low-temperature structures can be described by the same orthorhombic superspace group $Cmcm(\sigma_1(0))0s0$.

The most remarkable feature of the $2a \times b \times c$ superstructure below T_{c2} is a dimerization of the Ti chains with a Ti-Ti distance alternation along c (Fig. 2(a),(b)), that is a structural evidence of the SP state in TiPO$_4$. In the incommensurate phase at intermediate temperatures the Ti chains along c remain dimerized, but all the chains possess different degrees of dimerization (Fig. 2(c)). Density functional calculations suggest that the incommensurate phase results from a competition of three energetically almost degenerate crystal structures and elastic coupling of the Ti chains via the rigid PO$_4$ units.

In conclusion, synchrotron-based x-ray diffraction studies of TiPO$_4$ at low temperatures allowed to obtain the structural proof of the SP transition, to characterize the structures of low-temperature phases and to uncover the origin of the incommensurate phase. The results of the project are reported in Ref. [3].

References

Figure 1: Diffracted intensity as a function of the scattering angle 2θ and the crystal orientation ω for three reflections at selected temperatures corresponding to three different phases of TiPO$_4$.

Figure 2: (a) Single TiO$_2$ chain from the crystal structure of TiPO$_4$. Arrows indicate the atomic displacements corresponding to the $Pbnm$ structure model for the spin-Peierls phase at 10 K. (b) Projection of the crystal structure at 10K along [010]. (c) Incommensurate phase at 82 K represented by $4a \times b \times c$ basic-structure unit cells. Only Ti atoms are shown. Basic-structure coordinates are $x = 0$ or $1/2$ and $z = 0$ or $1/2$. For clarity all atomic displacements have been multiplied by 30. The figure is adapted from Ref. [3].
