The Influence of Modifier Cations on the Structure of Network Glasses

A. C. Hannon1, O. L. G. Alderman2, E. R. Barney3, D. Holland2, U. Hoppe4, S. Feller5, A. J. Vitale5, G. Lehr5, L. Koudelka6, I. Rösslerová6, M. v. Zimmermann7, and A. Watenphul7

1ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK
2Physics Department, University of Warwick, Coventry, CV4 7AL, UK
3University of Nottingham, Novel Photonic Glasses Research Group, Electrical Systems & Optics Research Division, Faculty of Engineering, Nottingham NG7 2RD, UK
4Department of Physics, Rostock University, Universitätsplatz 3, D-18051 Rostock, Germany
5Physics Department, Coe College, Cedar Rapids, IA 52402, USA
6Dept of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
7Deutsches Synchrotronsstrahlungslabor, HASYLAB at DESY, Notkestrasse 85, D-22603 Hamburg, Germany

A wide-ranging study of the influence of modifier cations on the structure of network glasses has been performed, using the excellent high energy X-ray diffractometer BW5.

The use of high energy synchrotron x-rays is necessary for highly absorbing materials, such as lead containing glasses. The monochromator of beamline BW5 was tuned to pass x-rays of 85 keV, allowing for a huge reduction of the absorption cross-section of the lead-containing glasses, compared to that at typical laboratory x-ray source energies, whilst also avoiding fluorescence excitation above the 88 keV Pb K-edge. The precise x-ray wavelength was calibrated using a LaB\textsubscript{6} standard. High quality data were collected for a large number of glass powders, mostly in 1.5 mm diameter thin-walled quartz glass capillaries. Data were also obtained for an empty capillary and a background. A Ge-detector was stepped over the angular range 0.5 < 2\theta < 32.0\degree, giving access to momentum transfers of magnitude up to 23.8 Å-1. Different attenuators were used over different sections of the angular range to avoid detector saturation on account of the natural form-factor dependence of the scattering. Raw scattering data were screened for bad points, normalised to the monitor counts, scaled according to the attenuator used, and corrected for detector dead-time and the experimental geometry prior to being further corrected and reduced using the GudrunX [1] software. GudrunX was used to correct for polarisation, Compton scattering, multiple scattering and attenuation in both sample and capillary, as well as to subtract the self-scattering, background and capillary contribution to the data. No fluorescence correction was necessary due to the choice of incident x-ray energy. Normalisation by the Krogh-Moe/Norman method yields scattering data on an absolute scale. The software performs the normalisation and corrections iteratively to allow for scaling by a calibration factor accounting for unknown detector efficiencies. Suitable Fourier transforms of the extracted distinct scattering, \(i(Q)\), yielded the real-space correlation functions \(T(r)\).

The glass forming systems that were studied include the following: PbO-SiO\textsubscript{2}, PbO-GeO\textsubscript{2}, PbO-Ga\textsubscript{2}O\textsubscript{3}, PbO-MoO\textsubscript{3}-P\textsubscript{2}O\textsubscript{5}, PbO-WO\textsubscript{3}-P\textsubscript{2}O\textsubscript{5}, ZnO-WO\textsubscript{3}-P\textsubscript{2}O\textsubscript{5}, Tl\textsubscript{2}O-GeO\textsubscript{2}, CaO-GeO\textsubscript{2}, Cs\textsubscript{2}O-GeO\textsubscript{2}.

The first paper on this work has just been accepted for publication [2]. The combination of results from high energy diffraction with results from time-of-flight neutron diffraction has proved very powerful. The graphical abstract of this paper is given below.
References

Graphical abstract of reference [2]…

Lone-Pair Distribution and Plumbite Network Formation in High Lead Silicate Glass, 80PbO.20SiO₂

Oliver L. G. Alderman, Alex C. Hannon, Diane Holland, Steve Feller, Gloria Lehr, Adam Vitale, Uwe Hoppe, Martin von Zimmerman, Anke Watenphul

The structure of a lead silicate glass, 80PbO.20SiO₂, with extremely high lead content is studied by high energy x-ray and neutron diffraction, and empirical structural modelling, in order to reveal details of the plumbite based glass network and electron lone-pair distribution.