Simultaneous SAXS and WAXS Measurements for *in situ* Investigations of Fischer-Tropsch Synthesis

K. Høydalsvik¹, J. B. Fløystad¹, A. Voronov², G. Voss², M. Esmaeili¹, J. Kehres¹, H. Granlund¹, J. W. Andreasen⁴, M. Rønning², and D. W. Breiby¹

¹Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
²Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Sælands vei 4, 7491 Trondheim, Norway
³DTU Center for Individual Nanoparticle Functionality, Technical University of Denmark, Fysikvej, Building 312, 2800 Lyngby, Denmark
⁴DTU Energy Conversion, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark

The Fischer-Tropsch synthesis (FTS) is a set of chemical reactions that forms hydrocarbon chains from a mixture of CO and H₂. The outcome can be used for petroleum substitutes, such as synthetic diesel (see for example [1]). Typically, cobalt nanoparticles of diameter 6-200 nm are used as catalyst, and optimal particle size as well as high temperature and pressure are required for the reactions to work well. After the syngas (H₂/CO) is introduced to the system, a change in the catalytic activity is observed during the first few hours. Until present, a correlation between these changes to the structure of the catalyst particles has not been found (it is very difficult using for example environmental transmission electron microscopy). On this basis, we decided to test if it is possible to use *in situ* small-angle X-ray scattering (SAXS) for monitoring the gross structural features of the nanoparticles. Due to their penetrating properties, X-rays provide a suitable probe for studying catalysts during reactions.

Figure 1: (a) Measured SAXS patterns from cobalt nanoparticles immediately before and some time after introducing syngas (H₂/CO). In order to quantify changes, a straight line has been fitted to the data at large Q (as illustrated in (b)), for all the measured SAXS patterns.

The SAXS/WAXS experiments were performed at the HASYLAB beamline B1, using an X-ray energy of 16.0 keV and with a distance between the sample and the SAXS detector of 3575 mm. The sample atmosphere and temperature is summarised in figure 2(a). The exposure time of the repeated measurements were 3 minutes. For each of the SAXS patterns the slope α was fitted to the measured data in the large Q region (Porod analysis), and the result is shown in figure 2(b). Wide-angle X-ray scattering (WAXS) was used to check that the cobalt oxide nanoparticles were
We found that combined SAXS and WAXS is well suited for studying catalyst particles during the reactions since information about size, shape and surface structures of the catalyst particles can be obtained in situ. These experiments showed that there is a change in the Porod slope α after gas-change from H_2 to syngas, which means that there is a change in shape, or of surface structure, of the catalyst particles. To the best of our knowledge, this is the first time a correlation has been found between the reported change in catalytic activity during the first few hours after introducing syngas and a measurable parameter that depends on the shape and surface structure of the particle.

We thank the HASYLAB staff for technical assistance, and in particular Ulla Vainio. The Research Council of Norway (SYNKROTRON programme) and ELISA (EU support of access to synchrotrons/FELs in Europe), are gratefully acknowledged for financial support.

References