Emission and excitation spectra of Ce$^{3+}$ and Pr$^{3+}$ ions in hexafluoroelpasolite lattices

V.N. Makhov, C.-K. Duan1, P.A. Tanner2, N.M. Khaidukov3, and A. Kotlov4

P.N. Lebedev Physical Institute, Leninskij Prospect 53, 119991 Moscow, Russia

1Department of Physics, University of Science and Technology of China, 230026 Hefei, P.R.China

2Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong S.A.R., P.R. China

3N.S. Kurnakov Institute of General and Inorganic Chemistry, Leninskij prospect 31, 119991 Moscow, Russia

4HASYLAB at DESY, Notkestraße 85, 22607 Hamburg, Germany

The interconfigurational $4f^N-4f^{N-1}5d$ electronic transitions of the tri-positive lanthanide ions, Ln$^{3+}$, doped into wide band-gap crystals attract much attention because of potential applications of Ln$^{3+}$ doped materials for ultraviolet lasers, scintillators, quantum cutters and VUV or x-ray phosphors. In the hexafluoroelpasolite host Cs$_2$NaYF$_6$ the Ln$^{3+}$ ions occupy octahedral symmetry (O_h) sites. This results in high energy level degeneracies (of up to fourfold) and to restrictive O_h symmetry selection rules for electronic transitions. The spectra of $4f^N-4f^{N-1}5d$ transitions of Ln$^{3+} = Nd^{3+}$, Sm$^{3+}$, Eu$^{3+}$, Gd$^{3+}$, Tb$^{3+}$, Ho$^{3+}$, Er$^{3+}$, Tm$^{3+}$ doped into Cs$_2$NaYF$_6$ have been studied in detail earlier [1]. In the present work [2], emission and excitation spectra of Ce$^{3+}$ and Pr$^{3+}$ ions doped into Cs$_2$NaYF$_6$ crystals have been investigated using for excitation UV/VUV synchrotron radiation at the Superlumi station of HASYLAB at DESY. The crystals of Cs$_2$NaYF$_6$ doped with Ce$^{3+}$ (or Pr$^{3+}$) were synthesized by a hydrothermal technique [3].

Excitation of Cs$_2$NaYF$_6$:Ce$^{3+}$ into the major Ce$^{3+}$ 4f-5d absorption band, using 315 or 300 nm radiation, gives the emission spectrum (Fig.1), which corresponds to electronic and vibronic structure of transitions from the lowest 5d level to the 4f $^2F_{5/2}$, $^2F_{7/2}$ multiplets of Ce$^{3+}$. Altogether, there are 5 unresolved electronic transitions within the band extending from 325 nm to 450 nm. In the excitation spectrum, zero phonon lines corresponding to transitions to the two 5d $^2T_{2g}$ states of Ce$^{3+}$ in this matrix have been located within the major Ce$^{3+}$ 4f-5d band at 319 and 295 nm. The 5d 2E_g levels of Ce$^{3+}$ have been estimated to lie within the conduction band of the host crystal. The fine structure in the excitation spectrum at the high-energy side of the major Ce$^{3+}$ 4f-5d band was well resolved and can be interpreted by vibrational progressions corresponding to three types of totally-symmetric modes of lattice vibrations near the Ce$^{3+}$ ion. Decay measurements of Ce$^{3+}$ emission, and spectra collected using spectrally selective excitation, indicate the occupation of at least two types of sites by Ce$^{3+}$ in this host lattice. The second type of Ce$^{3+}$ centers can be associated with the occupation of the cubic Cs$^+$ site by Ce$^{3+}$, where the crystal field strength is very small. The bands in the excitation spectrum between 275-200 nm could correspond to excitation of these centers.

The measurements of emission and excitation spectra of Cs$_2$NaYF$_6$:Pr$^{3+}$ have shown that emission spectrum of Pr$^{3+}$ in this host under 4f-4$f/5d$ excitation (using 206, 210 or 225 nm radiation) is purely due to interconfigurational 4f5d transitions of Pr$^{3+}$ and shows four main broad bands in the range 235-325 nm corresponding to transitions from the lowest 4f5d level to the 4f $^2F_{5/2}$, 2H_g, 2H_s, $^2H_{6s}$, 2F_2 and $^2F_{3,4}$ multiplets of Pr$^{3+}$ (Fig.2). In the excitation spectrum of Pr$^{3+}$ luminescence, five 4f-4$f/5d$ $^2T_{2g}$ transitions can be identified in the spectral range 200-230 nm. Since electronic transition from the ground 4f state to the lowest 4f5d level of Pr$^{3+}$ in Cs$_2$NaYF$_6$ is forbidden due to symmetry selection rules there exists an energy gap between emission band and the edge of excitation spectrum. The obtained spectral and decay data show that the Pr$^{3+}$ ions occupy a single site in the Cs$_2$NaYF$_6$ host lattice. The 5d emission lifetimes for Ce$^{3+}$ and Pr$^{3+}$ in this host were measured to be 42 and 29±1 ns, respectively.

The Pr$^{3+}$ doped crystals which show narrow-line emission from the Pr$^{3+}$ 4f 1S_0 level under Pr$^{3+}$ 4f → 4$f/5d$ excitation are considered as possible quantum cutting materials. The present study have shown that emission of Pr$^{3+}$ in the Cs$_2$NaYF$_6$ host comprises 4f5d → 4f transitions but not 4f 1S_0 → 4f ones because the lowest 4f5d level of Pr$^{3+}$ lies below the 4f 1S_0 energy level, i.e. Pr$^{3+}$ doped Cs$_2$NaYF$_6$ cannot be employed as quantum cutter.
Figure 1: Low temperature emission (right) and excitation (left) spectra of Cs$_2$NaYF$_6$:Ce$^{3+}$. Narrow lines in emission spectra in the range 250-315 nm correspond to scattered excitating radiation.

Figure 2: Low temperature emission (right) and excitation (left) spectra of Cs$_2$NaYF$_6$:Pr$^{3+}$. Narrow lines in emission spectra in the range 205-225 nm correspond to scattered excitating radiation.

The support by BMBF Grant RUS 10/037, RFBR Grants 10-02-91167 and 10-03-90305, NSFC Grants 11074245 and 11074315, GRF research grant CityU 102609 is gratefully acknowledged.

References