Luminescence properties of YVO$_4$:Eu$^{3+}$ nanocrystals in VUV spectral range

Vladimir Pankratov, Anatoli I. Popov, Liana Shirmane, Aleksei Kotlov1, Claus Feldmann2

Institute of Solid State Physics, University of Latvia, Latvia
1HASYLAB at DESY, Hamburg, Germany
2Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT)

Europium doped yttrium vanadate is one of the most important phosphor materials which currently find a variety of applications in cathode ray tubes [1], fluorescent lamps [2] and scintillator in image detectors [3]. Also YVO$_4$:Eu is promising material for high definition TVs based on plasma display panels [4]. YVO$_4$:Eu is characterized by its high energy-conversion efficiency, brightness, color purity, and high thermal stability. YVO$_4$:Eu the advantage over the currently used sulfide phosphors in stability in vacuum and absence of corrosive gas emission under electron bombardment. As a nanomaterial, YVO$_4$:Eu is relevant for these issues as well [5]. Additional interest is related to labeling, signaling, and biomedical purpose.

In present work comparative analysis of the luminescent properties of nanocrystalline YVO$_4$:Eu luminescent materials with macro crystalline analogues, commercially produced by Philips, has been performed. Nanocrystalline YVO$_4$:Eu (particle size is 12-15 nm, Eu$^{3+}$ ions concentration is 15 mol%) was produced by means of a microwave-induced synthesis in ionic liquids, which allows the efficient particle size, quality and impurity level control [6]. In order to avoid luminescence degradation due to surface loses YVO$_4$:Eu nanocrystals has been covered by YF$_3$ layer with thickness 1-2 nm (YVO$_4$:Eu@YF$_3$). The luminescence emission and excitation measurements were carried out under pulsed synchrotron radiation emitted from DORIS III storage ring on the SUPERLUMI station at HASYLAB.

Europium doped yttrium vanadate is one of the most important phosphor materials which currently find a variety of applications in cathode ray tubes [1], fluorescent lamps [2] and scintillator in image detectors [3]. Also YVO$_4$:Eu is promising material for high definition TVs based on plasma display panels [4]. YVO$_4$:Eu is characterized by its high energy-conversion efficiency, brightness, color purity, and high thermal stability. YVO$_4$:Eu the advantage over the currently used sulfide phosphors in stability in vacuum and absence of corrosive gas emission under electron bombardment. As a nanomaterial, YVO$_4$:Eu is relevant for these issues as well [5]. Additional interest is related to labeling, signaling, and biomedical purpose.

In present work comparative analysis of the luminescent properties of nanocrystalline YVO$_4$:Eu luminescent materials with macro crystalline analogues, commercially produced by Philips, has been performed. Nanocrystalline YVO$_4$:Eu (particle size is 12-15 nm, Eu$^{3+}$ ions concentration is 15 mol%) was produced by means of a microwave-induced synthesis in ionic liquids, which allows the efficient particle size, quality and impurity level control [6]. In order to avoid luminescence degradation due to surface loses YVO$_4$:Eu nanocrystals has been covered by YF$_3$ layer with thickness 1-2 nm (YVO$_4$:Eu@YF$_3$). The luminescence emission and excitation measurements were carried out under pulsed synchrotron radiation emitted from DORIS III storage ring on the SUPERLUMI station at HASYLAB.

![Fig. 1. Comparison of luminescence spectra in YVO$_4$:Eu in wide spectral range under 280 nm.](image1)

![Fig. 2. Comparison of fine structure of Eu$^{3+}$ emission in YVO$_4$:Eu under 300 nm excitation.](image2)

Luminescence spectra at 8 K for all samples are shown on the figure 1. Spectra is normalized at 617.5 nm. Spectra consist of characteristic Eu$^{3+}$ line and wide VO$_4^{3-}$ molecular complex intrinsic emission band. Is clearly seen that this intrinsic emission is absent in YVO$_4$:Eu nanocrystals covered by YF$_3$ layer.

Well-resolved characteristics Eu$^{3+}$ emission lines due to $^5D_0-^7F_J$ transitions have been observed in all samples studied (figure 2). The energy transfer mechanism of VO$_4^{3-}$—Eu$^{3+}$ is well-known to occur after a thermally activated energy migration through the vanadate sublattice. The emission of YVO$_4$:Eu nanoparticles usually occurs after energy transfer from the excited vanadate to the
europium ions [7]. It is shown, that Eu$^{3+}$ luminescence intensity is drastically decreased in nanocrystals comparing with the bulk sample. However, this emission could be partially restored in nanocrystals with passivated surface (YVO$_4$:Eu@YF$_3$). Obviously surface related loses are suppressed in covered nanocrystals.

Excitation spectra of europium emission in YVO$_4$:Eu is shown on figure 3. Spectra contain abundant structure at low energies and several broad overlapped intensive excitation bands at high energies. The short-wavelength excitation at around 260 nm is due to charge-transfer processes involving the Y–O components [8]. Comparing the nano and macrocrystalline samples is clearly seen, that Eu$^{3+}$ emission is poorly excited in nanocrystalline samples at energies, when the spatial separation of electron-hole pairs is comparable with sizes of nanoparticles. We suggest that energy-transfer processes form YVO$_4$ matrix to Eu$^{3+}$ ions are suppressed in nanocrystals, due to some competing relaxation channels, which are absent in bulk material.

On the other hand, excitation spectra of VO$_4^{3-}$ complex emission in YVO$_4$:Eu (figure 4) doesn’t differ so much for macro and nano crystals. It seems, the particle size doesn’t influence significantly the intrinsic emission centers in YVO$_4$:Eu.

References

Acknowledgment
The experiments at DESY leading to these results have received funding from European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant agreement #226716.
The work of L. Shirmane and V. Pankratov was supported by ESF Project 2009/0202/1DP/1.1.1.2.0/09/APIA/VIAA/141.